Sin(tan(qrs(3x^2+4)))=y

Simple and best practice solution for Sin(tan(qrs(3x^2+4)))=y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Sin(tan(qrs(3x^2+4)))=y equation:


Simplifying
Sin(tan(qrs(3x2 + 4))) = y

Reorder the terms:
inS(ant(qrs(4 + 3x2))) = y
inS(ant((4 * qrs + 3x2 * qrs))) = y
inS(ant((4qrs + 3qrsx2))) = y
inS((4qrs * ant + 3qrsx2 * ant)) = y
inS((4anqrst + 3anqrstx2)) = y
(4anqrst * inS + 3anqrstx2 * inS) = y
(4ain2qrstS + 3ain2qrstx2S) = y

Solving
4ain2qrstS + 3ain2qrstx2S = y

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Combine like terms: y + -1y = 0
4ain2qrstS + 3ain2qrstx2S + -1y = 0

The solution to this equation could not be determined.

See similar equations:

| 26/54=p | | 4^2x(2^6y)=1/4 | | X-32=5x | | m+2.5=4.6 | | 8x/40 | | 10m+8=8 | | 8=-7/y-2 | | x^2+50=25 | | 8x=1/32 | | 4-2/5x= | | 26/54=x/162 | | -2-26=-6x+30 | | 0=6.28r^2+113.668r-621.72 | | 3x^2+2x+1=56 | | -13+2x=6x+27 | | 53/102 | | 5x^2+14x+7=10 | | -5x-20=13-2x | | 42=2y | | -72+4x=-6x+38 | | x^3-x^2+4x-36=0 | | 3y^2+5y+6.25=18.25 | | -32+3x=-6x+49 | | z^2+(1-3i)*z-2*(1+i)=0 | | 3/5=300 | | 3/5=300/1 | | -1/8-3 | | 33[x+(-2)]-2x=-1 | | -28-x=28+3x | | x=512000*20/1000 | | 18x-15=3(4x-5+2x) | | Y+8y-40=0 |

Equations solver categories